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We address the problem of scheduling a multi-station multiclass queueing network (MQNET) with
server changeover times to minimize steady-state mean job holding costs. We present new lower
bounds on the best achievable cost that emerge as the values of mathematical programming problems
(linear, semidefinite, and convex) over relaxed formulations of the system’s achievable performance
region. The constraints on achievable performance defining these formulations are obtained by
formulating system’s equilibrium relations. Our contributions include: (1) a flow conservation
interpretation and closed formulae for the constraints previously derived by the potential function
method; (2) new work decomposition laws for MQNETs; (3) new constraints (linear, convex, and
semidefinite) on the performance region of first and second moments of queue lengths for MQNETs;
(4) a fast bound for a MQNET withN customer classes computed inN steps; (5) two heuristic
scheduling policies: a priority-index policy, and a policy extracted from the solution of a linear
programming relaxation.

1. Introduction. Multiclass queueing networks (MQNETs) provide a rich range of
models for complex service systems in application areas that include manufacturing (see
Buzacott and Shanthikumar 1993) and computer-communication systems (see Gelenbe and
Mitrani 1980). The practical needs to evaluate and improve the performance of such systems
have motivated extensive research efforts on the analysis, optimization and stability of
MQNETs.

Most relevant MQNET models have not yielded an exactperformance analysis(evaluating
the system performance under a scheduling policy). This has only been achieved in a
restricted range of models, such as product-form MQNETs (see Kelly 1979), and certain
single-server priority and polling systems (see Levy and Sidi 1990). A more feasible research
objective for those seemingly intractable MQNETs is to obtainperformance boundswhich
can be efficiently computed. These bounds may be used to approximate the performance of
a given scheduling policy, and to assess its suboptimality gap with respect to a performance
objective.

Theperformance optimizationproblem (computing the optimal system performance under
a range of scheduling policies, and finding a policy that achieves it) also appears
computationally intractable in most MQNET models, as shown by Papadimitriou and
Tsitsiklis (1994). Exact results have only been achieved in a range of systems that satisfy
certainwork conservationlaws: for them simple priority-index policies have been shown to
optimize linear performance objectives (see Bertsimas and Nin˜o-Mora 1996). In more
complex MQNETs researchers have focused their efforts on designingheuristicscheduling
policies that exhibit a good empirical performance (see, e.g., Wein 1990).

An important modeling feature that is absent in most studies on MQNETs with multiple
service stations is the inclusion ofchangeover times(which a server incurs when changing
service from one class to another). This is in contrast with the rather vast literature on
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single-station models with changeover times (usually calledpolling systems; see the survey
by Levy and Sidi 1990).

In this paper we address the performance optimization problem in multi-station MQNETs
with changeover times by means of theachievable region approach, with the objective of
developing a systematic method for computing performance bounds and designing schedul-
ing policies that nearly optimize performance objectives. We have investigated the corre-
sponding problem for single-station MQNETs in a companion paper (see Bertsimas and
Niño-Mora 1999).

The achievable region approach to performance optimization of queueing systems.
The achievable region approach to performance optimization, surveyed in Bertsimas (1995),
was introduced by Coffman and Mitrani (1980). It draws on the mathematical programming
approach to optimization, as it seeks to characterize theperformance regionachievable by a
system performance measure under a class ofadmissiblescheduling policies. The goal is to
formulate explicitly this region by means of equality and inequality constraints. Since it may
not be possible to formulate the exact performance region, we may have to settle for
constructing arelaxation that contains it.

Coffman and Mitrani (1980) first addressed with this approach the problem of minimizing
the class-weighted mean delay in a multiclassM/M/1 queue. They formulated exactly the
system performance region as a polyhedron, and showed that the known optimality of
priority-index policies (thecm-rule) follows from structural properties of this underlying
polyhedron. The scope of the approach has since been extended to tackle a range of
increasingly more complex systems. Drawing on earlier work by Federgruen and Groenevelt
(1988) and Shanthikumar and Yao (1992), Bertsimas and Nin˜o-Mora (1996) developed a
unified approach for formulating the exact performance region in a wide variety of MQNETs
that satisfy work conservation laws. They established that the strong structural properties of
these performance optimization problems (optimality of priority-index policies) are a
consequence of corresponding properties of their underlying polyhedral performance regions.

Researchers have sought recently to extend further the scope of the achievable region
approach, with the aim of solving computationally hard performance optimization problems:
restless bandits (see Bertsimas and Nin˜o-Mora 1994) and MQNETs (see Bertsimas,
Paschalidis and Tsitsiklis 1994, 1995 and Kumar and Kumar 1994).

The two critical problems the achievable region approach needs to overcome when
tackling a performance optimization problem are (a) generating constraints on the perfor-
mance region, and (b) designing effective policies from the solution of the corresponding
relaxations.

Regarding the first problem, an idea that has proven fruitful is to generate constraints by
formulating stochasticequilibrium relationssatisfied by the system. The kinds of equilibrium
relations that have been so far used in the literature include the following:

(1) Work conservation laws, which hold in single-server MQNETs under nonidling
policies (the server never stops working when there are jobs in the system). These laws lead
to an exact polyhedral characterization of the performance region (see Bertsimas and
Niño-Mora 1996).

(2) Work decomposition laws, which hold in single-server MQNETs that allow server
idleness (such as that caused by changeover times). Bertsimas and Xu (1993), and Bertsimas
and Niño-Mora (1999) have shown that these laws yield aconvex relaxationof the system
performance region, from which they obtain bounds and policies.

(3) Potential function recursions, as developed by Bertsimas, Paschalidis and Tsitsiklis
(1994, 1995), and by Kumar and Kumar (1994). The use of potential functions has proven
to be a powerful tool for generating a sequence of increasingly tighter polyhedral relaxations
for Markovian MQNETs.
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Although they have proven their value as powerful tools for generating constraints, the
above approaches exhibit certain limitations:

(1) The approach based on formulating work conservation laws is restricted to work-
conserving systems, thus excluding systems with server changeover times, and multi-station
MQNETs.

(2) The approach based on formulating work decomposition laws has only been developed
in single-server systems (see Bertsimas and Nin˜o-Mora 1999).

(3) The potential function method is algebraic in nature: it does not provide a physical
insight into the reason of its success.

The problem of designing in a systematic way effective scheduling policies for intractable
MQNETs from the solution of the relaxations remains an open challenge. Previous work in
this direction includes the dual-index policy proposed in Bertsimas and Nin˜o-Mora (1994) for
the restless bandit problem, and the policies for polling systems proposed in Bertsimas and
Xu (1993) and in Bertsimas and Nin˜o-Mora (1999).

Objective and contributions. Our objective in this paper is to support the thesis that the
achievable region approach is an effective tool for solving hard performance optimization
problems. We shall test this thesis by tackling via the approach the performance optimization
problem in an open multi-station MQNET model with changeover times. In Bertsimas and
Niño-Mora (1999) we address the corresponding problem in a single-station MQNET model
with changeover times.

Our contributions include:
(1) We developnew constraintson performance measures by formulating different kinds

of equilibrium relations than those considered previously in the literature.
(2) We reveal the physical origin of the constraints given by the potential function

method, as formulating the classicalflow conservation lawof queueing theoryL2 5 L1.
This understanding leads to explicit and simple formulas for all higher order relaxations.

(3) We provide the first known explicit relaxation for the performance region of second
moments of queue lengths in a multi-station MQNET. The relaxation is asemidefinite
programmingproblem, for which efficient (polynomial time) algorithms have been devel-
oped in recent years.

(4) As a byproduct of the flow conservation constraints, we obtain directlynew work
decomposition lawsfor multi-station MQNETs. From these laws we derive a family of
convex constraints that account explicitly for the effect of changeover times.

(5) We adapt Klimov’s one-pass algorithm for computing fast index-based performance
bounds for MQNETS.

(6) We proposeheuristic scheduling policiesbased on the solution of the relaxations.
First, we apply the flow conservation law appropriately in order to obtain relaxations for
MQNETs with finite buffers, from which one can naturally extract policies. Second, we
derive a bound on the optimal performance for a MQNET based on a relaxation that defines
indices in the network. These indices, which for the single-station MQNET case correspond
to the optimal indices derived in Klimov (1974), naturally define priority-index policies for
the multi-station MQNET case.

Structure of the paper. The rest of the paper is structured as follows: §2 introduces the
MQNET model and formulates the corresponding performance optimization problem in
terms of the achievable region approach. Sections 3–7 develop different families of
performance constraints by formulating system equilibrium relations. The constraints
presented in §7 account explicitly for the impact of changeover time parameters. Section 8
presents several positive semidefinite constraints. Section 9 summarizes the bounds and the
formulations developed previously and reports computational results. Section 10 proposes
two heuristic policies extracted from the formulations.
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We have summarized in Appendix A some basic results from the Palm calculus of point
processes that are used throughout the paper.

2. The MQNET model.

2.1. Model description. We consider a network of queues composed ofM single-
server stations and populated byN customer classes. The set of customer classes1
5 {1, . . . , N} is partitioned into subsets# 1, . . . , #M, so that stationm [ } 5 {1, . . . ,
M} only serves classes in itsconstituency#m. We note that the single class indexi [ 1 of
a customer used here carries the same information as the usual pair of indices (j , m) used
in much of the queueing network literature (see, e.g., Kelly 1979) for identifying jobs present
in the network, where an index denotes the job’s current type and the other its current
location. We further denote bys(i ) the station that services classi customers (which we shall
refer to asi-customers). The network isopen, so that customers arrive at the network from
outside, follow a Markovian route through one or several queues (i -customers wait for
service at thei-queue) and then leave the system. Externali -customers’ arrivals follow a
Poisson process with ratea i (if class i does not have external arrivals we leta i 5 0). The
service times ofi -customers are i.i.d., having an exponential distribution with meanb i

5 1/m i . Upon completion of its service at stations(i ), an i -customer may be routed for
further service to thej -queue, with probabilitypij , or it may leave the system, with
probability pi0 5 1 2 ¥ j[1 pij . We assume that routing matrixP 5 ( pij ) i , j[1 is such that
a single customer moving through the network eventually exits it, i.e., matrixI 2 P is
invertible. We further assume that all service times and arrival processes are mutually
independent.

The network is controlled by ascheduling policy, which specifies dynamically how each
server is allocated to waiting customers. Servers incurchangeover timeswhen moving from
one queue to another: if aftervisiting the i -queue the corresponding server moves to the
j -queue he incurs a random changeover time having a general distribution with meansij and
second momentsij

(2). Usual stochastic independence assumptions hold.
We shall refer to the following classes of scheduling policies:dynamicpolicies, under

which scheduling decisions may depend on the current or past states of all queues;static
policies, under which the scheduling decisions of each server depend only on the state of the
queue he is currently visiting;stablepolicies, under which the queue length vector process
has an equilibrium distribution with finite mean. We shall allow policies to bepreemptive(a
customer’s service may be interrupted and resumed later). However, we require that once a
changeover is initiated, it must continue to completion. We shall further refer to the class of
nonidlingpolicies, under which each server must be at any time either serving a customer or
engaged in a changeover.

We define next other model parameters of interest. Thetotal arrival rate of j -customers,
denoted byl j , is the total rate at which both external and internal customers arrive to the
j -queue. Thel j ’s are computed by solving the system

l j 5 a j 1 O
i[1

pijl i, for j [ 1.

The traffic intensityof j -customers, denoted byr j 5 l jb j , is the time-stationary probability
that aj -customer is in service. Thetotal traffic intensityat stationm is r(#m) 5 ¥ j[#m

r j ,
and is the time-stationary probability that serverm is busy. The condition

r~#m! , 1, for m [ }
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is necessary but not sufficient for guaranteeing the stability of any nonidling policy.
We assume that the system operates in a steady-state regime, under a stable policy, and

introduce the following variables:
● Li(t) 5 number ofi -customers in system at timet.
● Bi(t) 5 1 if an i -customer is in service at timet; 0 otherwise.
● Bm(t) 5 1 if serverm is busy at timet; 0 otherwise; notice thatBm(t) 5 ¥ i[#m

Bi(t).
● Bij (t) 5 1 if a server is engaged in ai 3 j changeover at timet; 0 otherwise.
In what follows we shall write, for convenience of notation,Li 5 Li(0), Bi 5 Bi(0), Bm

5 Bm(0) andBij 5 Bij (0).

2.2. The performance optimization problem. The main systemperformance mea-
sure we are concerned with is the vector whose components are the time-stationary mean
number from each class in the system, denoted byx 5 ( xj) j[1, where

xj 5 E@Lj#, for j [ 1.

Given a performance cost function c(x) (possibly nonlinear), we shall investigate the
following performance optimization problem: compute a lower boundZ # c(x) that is valid
under a given class of admissible policies, and design a policy which nearly minimizes the
costc(x).

We shall approach this problem via the achievable region approach, as described in the
Introduction. Let- be the performance region achievable by performance vectorx under all
admissible policies. Our first goal is to derive constraints on performance vectorx that define
a relaxation of performance region-. Since it is not obvious how to derive constraints onx
directly, we shall pursue the following plan: (1) identify systemequilibrium relationsand
formulate them as constraints involvingauxiliary performance variables; (2) formulate
additional positive semidefinite constraintson the auxiliary performance variables; (3)
formulate constraints that express the original performance vector,x, in terms of the auxiliary
variables.

Notice that this approach has a clear geometric interpretation: It corresponds to construct-
ing a relaxation of the performance region of the natural variables,xj , by (1) lifting this region
into a higher dimensional space, by means of auxiliary variables, (2) bounding the lifted
region through constraints on the auxiliary variables, and (3)projectingback into the original
space.Lift and project techniques have proven powerful tools for constructing tight
relaxations for hard discrete optimization problems (see, e.g., Lova´sz and Schrijver 1991).

We have summarized in Table 1 the performance measures considered in this paper.

TABLE 1. Network performance measures

Performance Variables Interpretation

xj ; x 5 (xj) j[1 E[Lj ]
xj

i ; X 5 (xj
i) i ,j[1; x i 5 (xj

i) j[1 E [Lj |Bi 5 1]
xj

0m; X 0 5 (xj
0m)m[},j[1; x0m 5 (xj

0m) j[1 E [Lj |B
m 5 0]

r ij ; R 5 (r ij ) i ,j[1 E[BiBj ]
r ij

k; Rk 5 (r ij
k) i ,j[1 E [BiBj |Bk 5 1]

r ij
0m; R0m 5 (r ij

0m) i ,j[1 E [BiBj |B
m 5 0]

yij ; Y 5 (yij ) i ,j[1 E[LiL j ]
yij

k; Y k 5 (yij
k) i ,j[1 E [LiL j |Bk 5 1]

yij
0m; Y 0m 5 (yij

0m) i ,j[1 E [LiL j |B
m 5 0]

f ij ; F 5 (f ij ) i ,j[1 rate of i 3 j changeovers
f i ; f 5 (f j) j[1 rate of server visits to the

i -queue
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3. Projection constraints. We present in this section several sets of linear equality
constraints that express natural performance measures in terms of auxiliary ones. These
constraints correspond geometrically to aprojection: they allow us to recover the values of
natural performance measures from the corresponding values of auxiliary ones.

THEOREM 1 (PROJECTION CONSTRAINTS). Under any dynamic stable policy, the following
equations hold:

(a)

(1) xj 5 O
i[#m

r ix j
i 1 ~1 2 r~#m!!x j

0m, for j [ 1, m [ }.

(b)

(2) r ij 5 O
k[#m

rkr ij
k 1 ~1 2 r~#m!!r ij

0m, for i , j [ 1, m [ }.

(c) If E[(L 1 1 . . . 1 LN) 2] , ` then

(3) yij 5 O
k[#m

rky ij
k 1 ~1 2 r~#m!!y ij

0m, for i , j [ 1, m [ }.

PROOF. The constraints in (a), (b) and (c) are elementary, as they follow by a conditioning
argument, by noticing that at each time every server is either serving some customer class in
its constituency or idling. h

4. Lower bound constraints. We present in this section a new set of lower bound
constraints on auxiliary performance variables.

THEOREM 2 (LOWER BOUND CONSTRAINTS). Under any dynamic stable policy, the following
linear constraints hold:

(a)

(4) r ij $ max~0, r i 1 r j 2 1!, for i , j [ 1.

(b)

(5) x j
i $

r ij

r i
, for i , j [ 1,

(6) x j
i $

max~0, r i 1 r j 2 1!

r i
, for i , j [ 1.

(c)

(7) x j
0m $ maxS0,

r j 2 r~#m!

1 2 r~#m! D , for m [ }, j [ 1.

(d)

(8) r ij
k $ maxS0,

r ki 1 r kj

rk
2 1D , for i , j , k [ 1.

336 D. BERTSIMAS AND J. NIÑO-MORA



(e)

(9)

r ij
0m $ maxS0,

max~0, r i 2 r~#m!! 1 max~0, r j 2 r~#m!!

1 2 r~#m!
2 1D ,

for i , j [ 1, m [ }.

(f) If E[(L 1 1 . . . 1 LN) 2] , ` then

(10) yij $ r ij , for i , j [ 1,

(11) y ij
k $ r ij

k , for i , j , k [ 1,

(12) y ij
0m $ r ij

0m, for i , j [ 1, m [ }.

PROOF.
(a) The result follows directly by subtracting equation

P $Bi 5 1, Bj 5 0% 1 P $Bi 5 0, Bj 5 0% 5 1 2 r j

from

P $Bi 5 1, Bj 5 0% 1 P $Bi 5 1, Bj 5 1% 5 r i.

(b) The result follows from

(13)

x j
i $ P $Bj 5 1|Bi 5 1%

5
r ij

r i
.

(c) We have

(14)

x j
0m $ P $Bj 5 1|Bm 5 0%

5
P $Bj 5 1, Bm 5 0%

1 2 r~#m!
.

Now, by subtracting

P $Bj 5 1, Bm 5 1% 1 P $Bj 5 0, Bm 5 1% 5 r~#m!

from

P $Bj 5 1, Bm 5 1% 1 P $Bj 5 1, Bm 5 0% 5 r j

we obtain

(15) P $Bj 5 1, Bm 5 0% $ r j 2 r~#m!,
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which, combined with (14) yields the result.
(d) The result follows directly by subtracting

P $Bi 5 0, Bj 5 1|Bk 5 1% 1 P $Bi 5 0, Bj 5 0|Bk 5 1% 5 P $Bi 5 0|Bk 5 1% 5 1 2
r ki

rk

from

P $Bi 5 0, Bj 5 1|Bk 5 1% 1 P $Bi 5 1, Bj 5 1|Bk 5 1% 5 P $Bj 5 1|Bk 5 1% 5
r kj

rk
.

(e) The result follows by subtracting

P $Bi 5 0, Bj 5 1|Bm 5 0% 1 P $Bi 5 0, Bj 5 0|Bm 5 0% 5 P $Bi 5 0|Bm 5 0%

from

P $Bi 5 0, Bj 5 1|Bm 5 0% 1 P $Bi 5 1, Bj 5 1|Bm 5 0% 5 P $Bj 5 1|Bm 5 0%,

and then applying inequality (15).
(f) The inequalities in (f) are elementary, as they follow from the relationLi $ Bi . h

5. Flow conservation constraints. We present in this section a set of linear constraints
on performance measures by formulating the classicalflow conservation lawof queueing
theory L2 5 L1. This law states that, in a queueing system in which the queue size can
increase or decrease only by unit steps, the stationary state probabilities of the number in
system at arrival epochs and that at departure epochs are equal. These constraints were first
derived for multi-station MQNETs by Bertsimas, Paschalidis and Tsitsiklis (1994), and by
Kumar and Kumar (1994), through a potential function approach. The corresponding
constraints for single-station MQNETs were obtained by Klimov (1974) via transform
methods.

Our contribution in this section is twofold: (1) we reveal that the physical origin of the
constraints produced by the potential function approach is the flow conservation lawL2

5 L1; (2) we derive new closed formulae for all higher-order constraints (with the potential
function approach these are generated recursively).

In particular, we shall apply the lawL2 5 L1 to a family of queues obtained by
aggregating customer classes, as explained next. LetS # 1.

DEFINITION 1 (S-QUEUE). The S-queue is the queueing system obtained by aggregating
customer classes inS. The number in system at timet in the S-queue is denoted byLS(t)
5 ¥ j[S L j(t).

As usual we writeLS 5 LS(0), LS
2 5 LS(02), LS

1 5 LS(01) 5 LS(0).
We denote byAS the point process ofnet arrival epochsto theS-queue, which consists of

S-customer external arrival epochs and customer routing epochs from a class inSc to a class
in S. We can thus express point processAS as thesuperposition(see Appendix A) of the
elementary network point processes shown in Table 2, as follows:

AS 5 O
j[S

Aj
0 1 O

i[Sc

O
j[S

Rij .
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Similarly we denote byDS the point process ofnet departure epochsfrom the S-queue,
consisting ofS-customer external departure epochs and customer routing epochs from a class
in S to a class inSc,

DS 5 O
j[S

D j
0 1 O

j[S

O
i[Sc

Rji .

Notice that we ignore customer routing epochs within classes inS, since they do not change
the number of customers in theS-queue.

For convenience of notation we shall also write

p~i , S! 5 O
j[S

pij

and

a~S! 5 O
j[S

a j.

We denote the Palm probabilities and expectations with respect to point processesAS and
DS by PAS[, EAS[ z ] andPDS[, EDS[ z ], respectively. The time-stationary distributions and
expectations are denoted byP[ andE[ z ], respectively.

We state and prove next our main result, which formulates the lawL2 5 L1 as it applies
to theS-queue: The stationary state probabilities of the number of customers in theS-queue
just before a net customer arrival epoch and just after a net customer departure epoch to/from
theS-queue are equal. The theorem formulates this identity between Palm distributions as a
linear relation between time-stationary distributions, thus bridging the gap between them.

THEOREM 3 (THE LAW L2 5 L1
IN MQNETS). Under any dynamic stable policy, and for

any subset of customer classes S# 1 and nonnegative integer l:
(a)

(16) PAS $L S
2 5 l % 5 PDS $L S

1 5 l %.

(b) Identity (16) is equivalently formulated as

(17)

a~S!P $LS 5 l % 1 O
i[Sc

l ip~i , S!P $LS 5 l |Bi 5 1%

5 O
i[S

l i~1 2 p~i , S!!P $LS 5 l 1 1|Bi 5 1%.

PROOF. Part (a) follows directly by applying the flow conservation lawL2 5 L1 to the
number in system process {LS(t)} corresponding to theS-queue.

TABLE 2. Elementary network point processes and their intensities

Point Process Epochs Intensity Stochastic Intensity

Ai
0 externali -customer arrivals a i lAi

0
(t)5a i

D i
0 externali -customer departures l ipi0 lDi

0
(t) 5 m ipi0Bi(t)

Rij i 3 j customer routing l ipij lRij (t) 5 m ipij Bi(t)
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(b) The key tool we shall apply for expressing the Palm distributions in part (a) in terms
of time-stationary distributions is Papangelou’s theorem (Theorem 11 in Appendix A). First,
we notice that arrival point processAS admits a stochastic intensity (see Appendix A),

(18) l S~t! 5 a~S! 1 O
i[Sc

O
j[S

m ipijBi~t!,

whereas the stochastic intensity of departure point processDS is

(19) m S~t! 5 O
i[S

m i~1 2 p~i , S!!Bi~t!.

Let lS 5 E[lS(0)] andmS 5 E[mS(0)]. Notice that, by flow conservation,lS 5 mS.
Now, by Papangelou’s theorem, Eq. (18) and the relationP { Bi 5 1} 5 r i we have

(20)

l SPAS $L S
2 5 l % 5 l SEAS @1$LS~02! 5 l %#

5 E @l S~0!1$LS~0! 5 l %#

5 a~S!P $LS 5 l % 1 O
i[Sc

O
j[S

l ipijP $LS 5 L|Bi 5 1%,

and, similarly,

(21)

m SPDS $L S
1 5 l % 5 m SPDS $L S

2 5 l 1 1%

5 E @m S~0!1$LS~0! 5 l 1 1%#

5 O
i[S

l i~1 2 p~i , S!!P $LS 5 l 1 1|Bi 5 1%.

Now, equating (20) and (21) (by part (a)), and using the fact thatlS 5 mS the result
follows. h

Taking expectations in identity (17) we obtain our next result, which formulates a linear
relation between time-stationary moments of queue lengths.

COROLLARY 1. Under any dynamic stable policy, and for any subset of customer classes
S # 1 and positive integer K for which E[(L1 1 . . . 1 LN)K] , `,

(22)

a~S!E@L S
K# 1 O

i[Sc

l ip~i , S!E @L S
K|Bi 5 1#

5 O
i[S

l i~1 2 p~i , S!!E @~LS 2 1! K|Bi 5 1#.

The equilibrium equations in Corollary 1 corresponding toK 5 1, 2 andS 5 { i }, { i , j },
for i , j [ 1, yield directly the system of linear constraints on performance variables shown
next. LetL 5 Diag(l).

COROLLARY 2 (FLOW CONSERVATION CONSTRAINTS). Under any dynamic stable policy, the
following linear constraints hold:
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(a)

(23) 2ax9 2 xa9 1 ~I 2 P!9LX 1 X 9L~I 2 P! 5 ~I 2 P!9L 1 L~I 2 P!.

(b) If E[(L 1 1 . . . 1 LN) 2] , `, then

(24) a jyjj 1 O
r[1

l rprjy jj
r 2 l jy jj

j 1 2l j~1 2 pjj!x j
j 5 l j~1 2 pjj!, j [ 1,

(25)

a iyjj 1 a jyii 1 2~a i 1 a j!yij 1 O
r[1

l rpriy jj
r 1 O

r[1

l rprjy ii
r 1 O

r[1

2l r~pri 1 prj!y ij
r

2 l iy jj
i 2 l jy ii

j 2 2l iy ij
i 2 2l jy ij

j 2 2l j p ij
x i

i 2 2l jpjix j
i 1 2l i~1 2 pii 2 pij!x j

i

1 2l j~1 2 pji 2 pjj!x i
j 5 2l ipij 2 l jpji , i , j [ 1

REMARKS.
(1) Eqns. (23) in Corollary 2 were first derived by Bertsimas, Paschalidis and Tsitsiklis

(1994), and by Kumar and Kumar (1994) through a potential function method. In both papers
the authors assumed the stronger condition that the second moment of the total number of
customers in the network is finite, i.e.,E[(L 1 1 . . . 1 LN) 2] , `. We only require, as in
Kumar and Meyn (1996), finiteness of the corresponding first moment.

(2) Bertsimas, Paschalidis and Tsitsiklis (1994) proposed a recursive algebraic procedure
for generating higher-order constraints corresponding to Eqns. (22) in Corollary 1 (with
K $ 2). In contrast to their approach, we present in Corollary 1 closed formulae that reveal
the simple structure of this family of equations.

(3) Interestingly, forK 5 1, it can been seen that all the equations in (22) for |S| $ 3 are
implied by those with |S| # 2. Similarly, for k 5 2, all equations in (22) foruSu $ 4 are
implied by those withuSu # 3.

6. Workload decomposition constraints. In this section we derive a new family of
linear constraints by identifying and formulating newwork decomposition lawssatisfied by
the system. A work decomposition law is a linear relation between the mean number in
system from each class at an arbitrary time and at an arbitrary time during a period when
some servers are idle. Our contributions include: (1) a family of newwork decomposition
laws for multi-station MQNETs, which extends the most general results known previously:
Boxma’s (1989) work decomposition law for multiclassM/G/1 queues, and Bertsimas and
Niño-Mora’s (1999) work decomposition laws for single-server MQNETs; (2) tighter
network workload bounds, which improve upon the bounds derived by Bertsimas, Pascha-
lidis and Tsitsiklis (1994); (3) new families of convex constraints for MQNETs with
changeover times, obtained from the new work decomposition laws.

The idea of deriving performance constraints from work decomposition laws was
introduced by Bertsimas and Xu (1993) in the setting of a multiclassM/G/1 queue with
changeover times. They derived a set of convex constraints by applying a work decompo-
sition law due to Fuhrmann and Cooper (1985). Bertsimas and Nin˜o-Mora (1999) have
extended the idea to single-server MQNETs with changeover times, presenting a family of
new work decomposition laws, and applying them to formulate new convex performance
constraints.

6.1. Work decomposition laws. In order to develop the new work decomposition laws
we first present the following definition. LetS # 1 be a subset of customer classes.
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DEFINITION 2 (S-WORKLOAD). The workload process corresponding to theS-queue (see
Definition 1) is called theS-workload process, denoted by {VS(t)} t[R. VS(t) is thus the total
remaining service time needed for first clearing theS-queue of allS-customers present at
time t.

We shall denote byBS
m(t) the indicator of the event that serverm is busy with an

S-customer at timet, i.e., BS
m(t) 5 ¥ i[Sù#m

Bi(t). As before, we writeVS 5 VS(0), BS
m

5 BS
m(0).

We next define parametersVi
S, for i [ 1, as the solution of the system of linear equations

(26) Vi
S 5 b i 1 O

j[S

pijV j
S, for i [ 1.

We shall refer toVi
S, for i [ S, as theS-workload of an i-job, as it represents the mean

remaining service time a currenti -job receives until its class first leavesS following
completion of its current service.

In what follows we shall use the following matrix notation: ifS, T # 1, z 5 ( zi) i[1 is
an N-vector, andA 5 (aij ) i , j[1 is anN 3 N matrix, we shall write

zS 5 ~zj! j[S, and AST 5 ~aij! i[S,j[T.

For example, we write Eqns. (26) in matrix form as

V S
S 5 bS 1 PSSVS

S,

V Sc
S 5 bSc 1 PScSV S

S,

whereb 5 (b i) i[1.
Furthermore, we shall denote byr 0(S) the rate at whichexternal S-work enters the system,

i.e.,

r 0~S! 5 O
j[S

a jV j
S,

and write

r~S! 5 O
j[S

r j.

We state and prove next the new work decomposition laws, which formulate a
decomposition of the mean workload in theS-queue, for everyS # 1. Let }(S) denote the
set of stations that serviceS-customers, and letM(S) 5 |}(S)| be its corresponding
cardinality.

THEOREM 4 (WORK DECOMPOSITION LAWS). Under any dynamic stable policy, and for any
subset S# 1 of customer classes:
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(a)

(27)

~M~S! 2 r 0~S!! O
j[S

Vj
Sxj 5 O

j[S

r jV j
S 1 O

i[Scù~øm[}~S!#m!

O
j[S

r iV j
Sx j

i

1 O
i[Sc

O
j[S

~l iV i
S 2 r i!Vj

Sx j
i

1 O
m[}~S!

O
j[S

~1 2 r~#m!!Vj
Sx j

0m.

(b) Identity (27) is equivalently formulated as

(28)

~M~S! 2 r 0~S!!E@VS# 5 O
j[S

r jV j
S 1 O

i[Sc

~l iV i
S 2 r i!E @VS|Bi 5 1#

1 O
m[}~S!

~1 2 r~Sù #m!!E @VS|BS
m 5 0#.

PROOF. (a) Let us defineN-vectorv by

v 5 S V S
S

0 D ,

and set functionb(S) by

b~S! 5 1
2 O

i[S

O
j[S

Vi
SV j

Sbij ,

whereB 5 (bij ) i , j[1 is the matrix defined by

B 5 ~I 2 P!9L 1 L~I 2 P!.

We then have, by the flow conservation equations (23) in Corollary 2, that

(29)

b~S! 5 1
2 v9$2ax9 2 xa9 1 ~I 2 P!9LX 1 X 9L~I 2 P!%v

5 2r 0~S! O
j[S

Vj
Sxj 1 HS I S 2 PSS 2PSSc

2PScS I Sc 2 PScSc
DS V S

S

0 DJ 9
LXS V S

S

0 D

5 2r 0~S! O
j[S

Vj
Sxj 1 ~b9S b9Sc 2 V Sc

S9 !LS XSS XSSc

XScS XScSc
DS V S

S

0 D
5 2r 0~S! O

j[S

Vj
Sxj 1 O

i[S

O
j[S

r iV j
Sx j

i 2 O
i[Sc

O
j[S

~l iV i
S 2 r i!Vj

Sx j
i

5 2r 0~S! O
j[S

Vj
Sxj 2 O

i[Sc

O
j[S

l iV i
SV j

Sx j
i 1 O

i[1

O
j[S

r iV j
Sx j

i.
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Now, from Eqns. (1) in Theorem 1 it follows that

(30) xj 5 O
i[Sù#m

r ix j
i 1 O

i[Scù#m

r ix j
i 1 ~1 2 r~#m!!xmj

0 , for m [ }.

Adding overm [ }(S) in (30) we obtain

(31) M~S!xj 5 O
i[S

r ix j
i 1 O

i[Scù~øm[}~S!#m!

r ix j
i 1 O

m[}~S!

~1 2 r~#m!!xmj
0 .

Now, simplifying (29) using (31) yields

(32)

b~S! 5 ~M~S! 2 r 0~S!! O
j[S

Vj
Sxj 2 O

i[Scù~øm[}~S!#m!

O
j[S

Vj
Sr ix j

i

2 O
i[Sc

O
j[S

~l iV i
S 2 r i!Vj

Sx j
i 2 O

m[}~S!

O
j[S

~1 2 r~#m!!Vj
Sx j

0m.

On the other hand, we have

(33)

b~S! 5 1
2 V S

S9BSSV S
S

5 1
2 ~V S

S9 0!$~I 2 P!9L 1 L~I 2 P!%S V S
S

0 D
5 ~V S

S9 0!~I 2 P!9LS V S
S

0 D
5 HS I S 2 PSS 2PSSc

2PScS I Sc 2 PScSc
DS V S

S

0 DJ 9
LS V S

S

0 D
5 ~b9S b9Sc 2 V Sc

S9 !LS V S
S

0 D
5 O

j[S

r jV j
S.

Finally, substituting (33) into (32) yields directly identity (27).
(b) It follows from the definition of theS-workload process that

E@VS# 5 O
j[S

Vj
Sxj,

E @VS|Bm 5 0# 5 O
j[S

Vj
Sx j

0m

and

E @VS|Bi 5 1# 5 O
j[S

Vj
Sx j

i,
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which, combined with Eq. (27) yields

(34)

~M~S! 2 r 0~S!!E@VS# 5 O
j[S

r jV j
S 1 O

i[Scù~øm[}~S!#m!

r iE @VS|Bi 5 1#

1 O
i[Sc

~l iV i
S 2 r i!E @VS|Bi 5 1#

1 O
m[}~S!

~1 2 r~#m!!E @VS|Bm 5 0#.

Identity (28) now follows by simplifying Eq. (34) using the elementary relations

(35)

E @VS|BS
m 5 0# 5

r~Sc ù #m!

1 2 r~Sù #m!
E @VS|BSc

m 5 1#

1
1 2 r~#m!

1 2 r~Sù #m!
E @VS|Bm 5 0#

and

(36) r~Sc ù #m!E @VS|BSc
m 5 1# 5 O

i[Scù#m

r iE @VS|Bi 5 1#. h

REMARK. Identity (28) in Theorem 4(b) may be interpreted physically in terms of work
decomposition, as it says that the mean networkS-workload decomposes into three
components: (1) a constant term, independent of the policy, (2) a linear combination of the
conditional meanS-workloads during the service ofSc-customers, and (3) a linear
combination of the conditional meanS-workloads during idle periods of servers who service
S-customers. In particular, forS 5 1, Eq. (28) yields

(37) E@V1# 5
¥ j[1 r jV j

1

M 2 r~1!
1 O

m[}

1 2 r~#m!

M 2 r~1!
E @V1|Bm 5 0#,

which means that the total mean network workload decomposes into a constant term plus a
linear convex combination of the conditional mean network workloads during servers idle
times. Therefore, identity (28) extends the work decomposition laws developed by Boxma
(1989) and by Bertsimas and Nin˜o-Mora (1999) for single-station systems to multi-station
MQNETs.

As an application of the work decomposition laws in Theorem 4 we present next a family
of workload bounds for MQNETs, which improve upon the workload bounds developed in
Bertsimas, Paschalidis and Tsitsiklis (1994). Let us define a set functiong(S) on subsetsS
of customer classes by
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g~S! 5
¥ j[S r jV j

S

M~S! 2 r 0~S!
1

¥ i[Scù~øm[}~S!#m! ¥ j[S Vj
S max~0, r i 1 r j 2 1!

M~S! 2 r 0~S!

1

¥ i[Sc ¥ j[S ~l iV i
S 2 r i!Vj

S maxS0,
r i 1 r j 2 1

r i
D

M~S! 2 r 0~S!

1
¥m[}~S! ¥ j[S Vj

S max~0, r j 2 r~#m!!

M~S! 2 r 0~S!
.

(38)

COROLLARY 3 (WORKLOAD BOUNDS). Under any dynamic stable policy, the following
workload bounds hold:

(39) O
j[S

Vj
Sxj $ g~S!, for S# 1.

PROOF. Inequality (39) follows directly by combining work decomposition Eq. (27) in
Theorem 4(a) and the lower bounds in Theorem 2(b)–(c).h

REMARKS.
(1) The workload bounds in Corollary 3 improve upon the ones developed by Bertsimas,

Paschalidis and Tsitsiklis (1994): they showed that under any dynamic and stable scheduling
policy,

(40) O
j[S

Vj
Sxj $

¥ j[S r jV j
S

M~S! 2 r 0~S!
, for S# 1.

(2) In the special case of single-server MQNETs, it follows from identity (27) that the
workload bound in (40) is achieved under any dynamic nonidling policy that gives
preemptive service priority toS-customers overSc-customers. This shows that performance
measurex satisfies the work conservation laws in Bertsimas and Nin˜o-Mora (1996), and it
follows from their work that the family of inequality constraints in (40), forS , 1, together
with the equation¥ j[1 Vj

1xj 5 ¥ j[1 r jVj
1/(1 2 r(1)), formulate exactly the performance

region of thexj ’s.

7. Convex constraints for MQNETs with changeover times. We present in this
section constraints on achievable performance that account for the effect of servers
changeover times. We first establish some elementary linear constraints on visit and
changeover frequencies (f j , f ij ; see Table 1).

PROPOSITION1. Under any dynamic stable policy,
(a)

(41) f i 5 O
j[#s~i !\$i %

f ij 5 O
j[#s~i !\$i %

f ji , for i [ 1.

(b) If the policy is nonidling, then

(42) O
i ,j[#m:iÞj

sij f ij 5 1 2 r~#m!, for m [ }.
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PROOF.
(a) Eq. (41) formulates a simple flow conservation relation: the rates at which servers(i )

visits and leaves thei -queue are equal.
(b) Eq. (42) formulates the elementary identity

O
i ,j[#m

P $Bij 5 1% 5 1 2 r~#m!,

which holds under the nonidling assumption. Notice that we have used the identityP { Bij

5 1} 5 sij f ij . h

In order to develop the new convex constraints we introduce the following concept from
the vacation queues literature:

DEFINITION 3 (VACATION). We say that serverm [ } is taking avacationaway from a
set of customer classesS # #m when he is not servingS-customers.

Consider now the point processNm,S of epochs at which serverm initiates avacationaway
from S ù #m-customers (which we refer to henceforth as aserver m S-vacation), for S
# 1. We also letI m,S be a random variable with the equilibrium distribution of a serverm
S-vacation interval, and defineBm,S(t) as the indicator that serverm is busy at timet with an
S-customer, i.e.,Bm,S(t) 5 ¥ j[Sù#m

Bj(t).
In the next result we establish lower bounds for the mean number ofj -customers in system

during changeover periods and during server vacations, respectively, and develop an
expression for mean server vacation times, in terms of visit and changeover frequencies. We
define set functionh(S) by

(43)

h~S! 5 1
2 Ha j~1 2 r~Sù #m!! 1 O

r[1\S

m rprj max~0, r r 2 r~Sù #m!!J ,

for S# 1.

PROPOSITION2. Under any policy that is static, nonidling and stable, we have:
(a) For m [ } and j, k, l [ #m, with k Þ l ,

(44) E @Lj|Bkl 5 1# $ a j

skl
~2!

2skl
1 O

r[1\#m

m rprjskl
~2!

2skl
2

max~0, r r 1 skl fkl 2 1!

fkl
.

(b) For S # 1, m [ }(S),

(45) E@I m,S# 5
1 2 r~Sù #m!

¥ j[Sù#m
fj

.

(c) For S # 1, m [ }(S), j [ S ù #m,

(46) E @Lj|Bm,S 5 0# $ h~S!
1

¥ j[Sù#m
fj

.

PROOF.
(a) Consider the point processHkl of k 3 l server changeover initiation epochs. We

introduce random variablev*kl, the elapsed time of a typicalk 3 l changeover period that
started at time 0, as seen by arandom observer. Notice that, by random incidence,E[v*kl]
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5 skl
(2)/ 2skl. Let us denote byzj

kl the mean number ofj -customers arriving during time
interval [0, v*kl). SinceE[Lj |Bkl 5 1] $ zj

kl, our next goal is to find a lower bound onzj
kl.

Notice first that, during ak3 l changeover period, the point process ofj -customer arrivals
has a stochastic intensity at timet given by

a j 1 O
r[1\#m

m rprjBr~t!.

By definition of stochastic intensity (see Appendix A), we have, understatic policies,

(47)

zj
kl 5 EHklF E

0

v *kl

a j dtG 1 O
r[1\#m

m rprjE
HklF E

0

v *kl

Br~t! dtG
5 a j

skl
~2!

2skl
1 O

r[1\#m

m rprjP $Br 5 1, Bkl 5 1%
skl

~2!

2sk l
2 fk l

,

since under such policies

EHklF E
0

v *kl

Br~t! dtG 5 P $Br 5 1|Bkl 5 1%
skl

~2!

2skl

5 P $Br 5 1, Bkl 5 1%
skl

~2!

2skl
2 fkl

.

Now, from

P $Br 5 1, Bkl 5 0% 1 P $Br 5 1, Bkl 5 1% 5 r r

and

P $Br 5 1, Bkl 5 0% 1 P $Br 5 0, Bkl 5 0% 5 1 2 skl fkl

it follows that

P $Br 5 1, Bkl 5 1% $ max~0, r r 1 skl fkl 2 1!.

Combining this inequality with Eq. (47), and with the relationE [Lj |Bkl 5 1] $ zj
kl yields

the result.
(b) The intensity of point processNm,S is easily seen to be¥ j[Sù#m

f j . Now, under a
nonidling policy, the duration of anS-vacation for serverm coincides with the total time that
server is not servingS-customers between two consecutive points of point processNm,S.
Therefore, under nonidling static policies,

E@I m,S# 5
1 2 r~Sù #m!

¥ j[Sù#m
fj

,
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which proves the result.
(c) Consider the point processNm,S of serverm S-vacation initiation epochs. We introduce

the random variableI*m,S, the elapsed time of a typical serverm S-vacation period that started
at time 0, as seen by a random observer. Notice that, by random incidence,E[ I*m,S]
5 E[ I m,S

2 ]/ 2E[ I m,S]. Let us denote byzj the mean number ofj -customers that arrive during
time interval [0,I*m,S). Since, clearly,E [Lj |Bm,S 5 0] $ zj , our next goal is to find a lower
bound onzj .

We first observe that during a serverm S-vacation the point process ofj -customer arrivals
has a stochastic intensity at timet given by

a j 1 O
r[1\S

m rprjBr~t!.

By definition of stochastic intensity,

(48)

zj 5 ENm,SF E
0

I *m,S

a j dtG 1 O
r[1\S

m rprjE
Nm,SF E

0

I*m,S

Br~t! dtG
5 a jE@I *m,S# 1 O

r[1\S

m rprjP $Br 5 1, Bm,S 5 0%
E@I *m,S#

1 2 r~Sù #m!
,

since

ENm,SF E
0

I *m,S

Br~t! dtG 5 P $Br 5 1|Bm,S 5 0%E@I *m,S#

5 P $Br 5 1, Bm,S 5 0%
E@I *m,S#

1 2 r~Sù #m!
.

Now, from

P $Br 5 1, Bm,S 5 1% 1 P $Br 5 1, Bm,S 5 0% 5 r r

and

P $Br 5 1, Bm,S 5 1% 1 P $Br 5 0, Bm,S 5 1% 5 r~Sù #m!

it follows that

P $Br 5 1, Bm,S 5 0% $ max~0, r r 2 r~Sù #m!!.

Combining this inequality with Eqns. (48) and (45), and using the fact that

E@I *m,S# 5
E@I m,S

2 #

2E@I m,S#
$

1

2
E@I m,S#

yields the result. h

The next result presents two families of convex constraints on performance variables.
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THEOREM 5. Under any policy that is static, nonidling and stable, the following convex
constraints hold:

(a) For m [ } and j [ #m,

(49)

x j
0m $ O

k,l[#m:kÞl

a jskl
~2!

2~1 2 r~#m!!
fkl

1 O
k,l[#m:kÞl

O
r[1\#m

m rprjskl
~2!

2skl~1 2 r~#m!!
max~0, r r 1 skl fkl 2 1!.

(b) For S # 1, m [ }(S) and j [ S ù #m,

(50) O
i[Scù#m

r ix j
i 1 ~1 2 r~#m!!x j

0m $ h~S!
1 2 r~Sù #m!

¥ j[Sù#m
fj

.

PROOF.
(a) The result follows directly by substituting inequality (44) to the elementary identity

x j
0m 5 O

k,l[#m

skl fkl

1 2 r~#m!
E @Lj|Bkl 5 1#,

valid under nonidling policies.
(b) The result follows directly from Proposition 2(c), by noticing that

E @Lj|Bm,S 5 0# 5
1

1 2 r~Sù #m! H O
i[Scù#m

r ix j
i 1 ~1 2 r~#m!!x j

0mJ . h

REMARK. Notice that constraints (50) are nonlinear, yet convex, which makes them
computationally tractable. Notice further that the nonlinear term in them involves the server
visit frequenciesf i ’s, which are not known in general. However, the achievable values of the
f i ’s are constrained by linear equality constraints (41) and (42) in Proposition 1. Combining
these constraints yields improved convex bounds.

8. Positive semidefinite constraints. We present in this section a set ofpositive
semidefinite constraintsthat may be used to strengthen the formulations obtained through
equilibrium relations. These constraints formulate the fact that the performance measures we
are considering are moments of random variables. The basic idea may be outlined as follows:
Given a vectorz and a symmetric real matrixZ, consider the following question: What is a
necessary and sufficient condition that captures the fact that, for some random vectorz, z
5 E[z] and Z 5 E[zz9]? It is easily seen that the required condition is that the matrix
Z 2 zz9, which represents the covariance matrix ofz, be positive semidefinite, i.e.,Z 2 zz9
f 0. This condition is formulated in matrix notation as

F 1 z9
z Z G f 0.

Applying this idea to the performance variables introduced in Table 1 yields directly the
following result.
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THEOREM 6. Under any dynamic stable policy, the following semidefinite constraints
hold:

(a)

(51) F 1 r9
r R G f 0,

(52) 3 1
1

rk
Rkz

1

rk
R zk R k 4 f 0, for k [ 1.

(b) If E[(¥ j[1 Lj)
2] , `, then

(53) F 1 x9
x Y G f 0,

(54) F 1 x k9

x k Y k G f 0, for k [ 1,

(55) F 1 x 0m9

x 0m Y 0m G f 0, for m [ }.

REMARK. The problem of minimizing a linear objective subject to positive semidefinite
constraints, called asemidefinite programming problem, has received considerable attention
in the mathematical programming literature due to applications in discrete optimization and
control theory. There are several efficient interior point algorithms (see Vandenberghe and
Boyd 1996 for a comprehensive review) to solve semidefinite programming problems.
Theorem 6 adds a new and, we believe, interesting application of semidefinite programming
in stochastic optimization.

9. Summary of bounds and their power. In previous sections we used various
equilibrium relations to derive constraints on performance variables which are valid under all
suitable classes of scheduling policies. While we have focused there on the physical meaning
of these relations, we show in this section how they can be used to provide performance
bounds for MQNETs by solving appropriate mathematical programming problems.

We shall consider in what follows a linear cost function

c~x! 5 O
j[1

cjxj,

and denote byZ the minimum cost achievable under the appropriate class of policies
(dynamic stable or static, nonidling and stable) policies,

Z 5 minH O
j[1

cjxj|x [ -J .

We have summarized in Table 3 several lower bounds and their corresponding mathematical
programming formulations, obtained by selecting appropriate subsets of the constraints
developed in previous sections.
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For example, the lower boundZLP1 is obtained by solving the linear program

ZLP1 5 max O
j[1

cjxj

subject to ~1!, ~6!, ~7!, ~23!.

An index-based lower bound computed inN steps. The boundZAG, shown in Table 3,
requires further explanation. We shall show howZAG is computed inN steps by combining
one-pass Klimov’s adaptive greedy algorithm with the workload bounds in Corollary 3.
Klimov (1974) developed his one-passN-stepadaptive greedyalgorithm (shown in Figure
1) for computing the priority indices that define the optimal policy in the special case of a
single-server MQNET. Bertsimas and Nin˜o-Mora (1996a) analyzed Klimov’s algorithm
using linear programming. The bound we present next is a byproduct of their analysis.

Specifically, let us run Klimov’s algorithm on input (c, V), wherec 5 (cj) j[1 is the cost
vector andV 5 (Vi

S) i[1,S#1, with theVi
S’s given by (26). The algorithm produces as output

a vectory# 5 ( y# (S))S#1 and a vector of indicesg 5 (g i) i[1. We assume for ease of notation
that

g1 # g2 # · · ·# gN.

Let set functiong(S) be given by (38), and let us define

ZAG 5 g1g~$1, . . . , N%! 1 ~g2 2 g1!g~$2, . . . , N%! 1 · · ·1 ~gN 2 gN21!g~$N%!.

TABLE 3. Bounds and formulations

Bound Formulation # variables # constraints Constraints

ZAG
a linear program O(N) O(2N) (39)

ZLP1 linear program O(N2) O(N2) (1), (6), (7), (23)
ZLP2 linear program O(N3) O(N3) (1)–(3), (4)–(12), (23)–(25)
ZSD1 semidefinite program O(N2) O(N2) (1), (4), (5), (7), (23), (51)
ZSD2 semidefinite program O(N3) O(N3) (1)–(3), (4)–(12), (23)–(25), (51)–(55)
ZCONVEX

b convex program O(N2) O(2N) (1), (6), (7), (23), (41), (42), (49), (50)

a Computed byN-steps Klimov’s algorithm
b Bound accounts for changeover times

Input: (c, V).
Output: (p, y# , g), wherep 5 (p 1, . . . , pN) is a permutation of1, y# 5 (y#(S))S#1 andg 5 (g 1, . . . , gN).
Step0. SetS1 5 1; set y# (S1) 5 min{ ci /Vi

S1: i [ S1};
pick p 1 [ argmin{ci /Vi

S1: i [ S1};
set g p1 5 y# (S1).

Step k. For k 5 2, . . . , N:
set Sk 5 Sk21\{ p k21}; set y# (Sk) 5 min{( ci 2 ¥ j51

k21 Vi
Sj y# (Sj))/Vi

Sk: i [ Sk};
pick p k [ argmin{(ci 2 ¥ j51

k21 Vi
Sj y# (Sj))/Vi

Sk: i [ Sk};
set g pk 5 g pk21 1 y# (Sk).

Step N1 1. For S # 1: set
y# ~S! 5 0, if Ş $S1, . . . , SN%.

FIGURE 1. Klimov’s adaptive greedy algorithm.
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THEOREM 7. The value ZAG is a lower bound on the optimal value Z.

PROOF. Bertsimas and Nin˜o-Mora (1999) showed that vectory# is a feasible solution of the
linear program

(LD) Z 5 max O
S#1

g~S!y~S!

subject to O
S:i[S#1

Vi
Sy~S! # ci, for i [ 1,

y~S! $ 0, for S# 1,

which is the dual of

(LP) Z 5 min O
i[1

cixi

subject to O
i[S

Vi
Sxi $ g~S!, for S# 1,

xi $ 0, for i [ 1.

Furthermore, they showed that

g i 2 g i21 5 y# ~$i , . . . , N%!, for i [ 1.

It thus follows thatZAG # Z. Since, in addition, we have by Corollary 3 thatZ # Z, the result
follows. h

Performance bounds for second moments. In previous sections we have focused our
attention on computing performance bounds for first moments of queue lengths. We now turn
our attention to finding performance bounds for second moments. To the best of our
knowledge, there has not been any characterization of the performance region of second
moments in the literature, even for single-server MQNETs.

We consider now a performance cost function that involves second-order moments. In
particular, given costscj andhj associated with classj customers, we consider the problem
of finding a lower bound on the cost

(56) O
j[1

~cjE@Lj# 1 hjE@L j
2#!,

valid under all admissible policies.
We can compute a lower bound on the optimal expected cost by solving the semidefinite

programming problem with a quadratic cost function of minimizing objective (56) subject to
the constraints corresponding to the boundZSD2 in Table 3.

9.1. Numerical results. We performed some limited numerical experiments to assess
the quality of some of the bounds we derived. The network we considered consists of two
stations. Class 1 arrives at station 1, then visits station 2 forming class 2, it revisits station 2
forming class 3, visits station 1 forming class 4, and finally exits from the network. Both the
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interarrival times of class 1 and the service times of all classes are exponentially distributed.
The arrival ratel 5 1. The mean service times satisfy:b1 5 0.25b2 and b3 5 0.25b4.
Therefore, the traffic intensities at the two stations arer1 5 b1 1 b4, andr2 5 b2 1 b3.

Classes 1 and 4 compete for service at station 1 and have changeover timess14 5 s41.
Similarly, Classes 2 and 3 compete at Station 2 and have changeover timess23 5 s32. We
define the changeover ratio (CH):CH 5 s14/b 1 5 s23/b 3, i.e., we select the changeover
times so that the changeover ratio at each station is the same.

Table 4 reports computational results for parameters such thatr1 5 r2. We simulated all
four possible priority policies, and report the performance of the best one. While it is possible
that priority policies are weak policies, the lower boundZCONVEX seems also weak, as the
traffic intensity increases. The quality of the bound is insensitive to the changeover ratio.

Rybko-Stolyar network. We consider the network of Figure 2. In this network external
arrivals come into either class 1 or class 3, and soa2 5 a4 5 0. In our computations we fix
the service times as shown in the figure, and vary only the arrival rates. We maintain the
symmetry between classes, and so we seta1 5 a3 5 a, wherea varies from 0.1 to 1.18. We
selectci 5 1 andhi 5 0, i.e., we are interested in minimizing the expected number of jobs
in the system in steady-state. We present below the optimal valuesZLP2

andZSD2
.

TABLE 4. The performance of the boundZCONVEX, and the best
priority policy as a function of the changeover ratioCH, and the

traffic intensitiesr1, r2.

CH r1 r2 ZCONVEX ZPRIORITY

0.0 0.2 0.2 0.43 0.54
0.2 0.2 0.2 0.52 0.63
0.4 0.2 0.2 0.71 0.83
0.6 0.2 0.2 0.87 1.01
0.8 0.2 0.2 1.09 1.24
1.0 0.2 0.2 1.31 1.43

0.0 0.5 0.5 1.12 2.16
0.2 0.5 0.5 1.25 2.33
0.4 0.5 0.5 1.43 2.72
0.6 0.5 0.5 1.62 3.09
0.8 0.5 0.5 1.84 3.51
1.0 0.5 0.5 2.17 4.42

0.0 0.9 0.9 3.05 17.12
0.2 0.9 0.9 3.47 18.31
0.4 0.9 0.9 4.13 21.73
0.6 0.9 0.9 4.92 25.86
0.8 0.9 0.9 6.13 30.55
1.0 0.9 0.9 8.39 41.77

FIGURE 2 The Rybko-Stolyar network.
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For comparison purposes, we also report simulation results for a particular policy that was
derived from fluid optimal control. When bothL4(t), L2(t) . B, the first station gives
preemptive priority to class 4 and the second station gives preemptive priority to class 2.
WhenL4(t) # B, class 3 has preemptive priority over class 2. Similarly, whenL2(t) # B, class
1 has preemptive priority over class 4. We call this policy last-buffer-first-served with a
thresholdB, denoted byLBFS2 B. We let E[ZLBFS2B] denote the expected number of jobs
under this policy. We select the value ofB optimally using simulation.

In Table 5, we report the valuesZLP2
, ZSD2

, the simulation valueE[ZLBFS2B], and the value
of the thresholdB that gives the optimal performance. In this case both bounds are strong.
The improvement due to the semidefinite constraints is not significant.

We consider a single station network with four classes but no changeover times. Our
objective here is to minimize¥ i51

4 xi 1 yii. For the case that we do not include terms
involving yii in the objective function, the LP relaxation is exact (see Bertsimas and
Niño-Mora (1996)).

We assume that the arrival rate for each class is the same, and that the mean service times
for the job classes are 0.05, 0.1, 0.2, and 0.4, respectively. The results of the LP and SDP
relaxations are tabulated in Table 6.

For comparision purposes we have simulated the following dynamic priority policyP: At

TABLE 5. Relaxations and policies for the network of Figure 2.

r ZLP2 ZSD2 E[ZLBFS2B] Best B

0.083 0.170 0.170 0.180 0
0.167 0.347 0.347 0.391 0
0.250 0.538 0.538 0.645 0
0.333 0.793 0.794 0.955 1
0.417 1.113 1.113 1.342 1
0.500 1.530 1.530 1.844 1
0.583 2.102 2.103 2.527 1
0.667 2.947 2.976 3.516 1
0.750 4.360 4.416 5.120 1
0.833 7.167 7.220 8.220 2
0.875 9.930 9.980 11.242 2
0.917 15.413 15.497 17.087 2
0.958 31.777 31.832 34.421 2
0.983 80.766 81.093 85.643 3

TABLE 6. Comparison of LP and SDP relaxations for a
multiclass queue.

r ZLP2 ZSD2 E[ZP]

0.075 0.162 0.162 0.165
0.150 0.352 0.358 0.365
0.225 0.578 0.598 0.616
0.300 0.854 0.901 0.940
0.375 1.198 1.302 1.374
0.450 1.639 1.857 1.978
0.525 2.227 2.676 2.872
0.600 3.047 3.982 4.294
0.675 4.270 6.287 6.740
0.750 6.269 10.991 11.655
0.825 10.072 22.314 24.227
0.900 19.811 60.948 74.020
0.975 89.332 725.855 1166.362
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every service completion timet, we give priority to the class that has the highest index
m iLi(t). The policy was derived from fluid optimal control. A simple interchange argument
establishes the optimality of this policy in the stochastic setting as well.

The computational results suggest that the semidefinite relaxation substantially improves
the linear programming relaxation. The improvement is more substantial as the traffic
intensityr increases. Also, since we know that the simulated policy is optimal, we can also
conclude that the semidefinite relaxation we consider isnot exact. Attempts to strengthen the
semidefinite relaxation in this special case may lead to new classes of constraints that are
useful in other settings as well; for that reason, it would be interesting to find an exact
relaxation for this special case.

We also note that for objectives involving second moments, unlike the LP relaxation, the
semidefinite relaxation provides practically useful suboptimality guarantees that can be used
to assess the closeness to optimality of heuristic policies.

10. From formulations to policies for MQNETs. We consider in this section the
problem of designing a policy that nearly minimizes a performance objective¥ j[1 cjxj .
Unlike in the single station case, the relaxations we have considered for MQNETs do not
provide an optimal policy for this problem. In this section we propose two techniques to
extract heuristic policies from the relaxations.

10.1. A priority-index policy for MQNETs. The first policy we propose is defined as
follows:

(1) Compute indicesg 1, . . . , gN by running Klimov’s algorithm (see Figure 1) on input
(c, V).

(2) Schedule customers at each station by giving higher preemptive priority to customer
classes with higher indexg i .

Notice that the policy is optimal for the single station case. In the multi-station case one
needs to consider the issue of whether the proposed policy is stable.

From a physical point of view, we can interpret the policy as follows: We create a new
fictitious station, which can be interpreted as if all servers of the network are pulled into a
single resource. The arrival rates, processing times and routing information remain the same.
The indicesg are exactly the optimal Klimov indices in this fictitious single-server network.
Notice that the indices do not have any information on the structure of the network, namely
which classes are served by which server. They only take into account the work that the
network needs to process.

As in Klimov (1978), it can be shown that the indexg i may be interpreted as the maximum
rate of decrease in holding cost rate per unit of network processing time for a customer whose
current class isi , i.e.,

g i 5 max
S]i

ci 2 ¥ j[Sc pij~S!cj

V i
S , for i [ 1,

wherepij (S) is the probability that a customer currently in classi [ Svisits classj [ Sc after
first leaving classes inS. Notice that

pij~S! 5 pij 1 O
k[S

pikpkj~S!, for i [ S, j [ Sc.

10.2. Policies from relaxations for networks with finite buffers. We assume that the
total number of customers in each station in the network is bounded byC.
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Recall thatLS 5 ¥ i[S L i . We introduce the following variables fori 5 1, . . . , N, m
5 1, . . . , M and l 5 0, . . . , C:

zi ,m,l 5 P $L#m
5 l |Bi 5 1%,

zm,l 5 P $L#m
5 l %.

Theorem 3 specialized forS 5 #m gives the following equations:

a~#m!zm,l 1 O
i[# m

c

l ip~i , #m!zi ,m,l 5 O
i[#m

l i~1 2 p~i , #m!!zi ,m,l11,

wherezi ,m,C11 5 0.
We next consider the relaxation that involves both the variablesz, Z, as well as the

variablesx, X. The proof of the theorem is immediate and thus omitted.

THEOREM 8. For C 5 ` the optimal solution value of the following infinitely dimensional
linear program provides a lower bound on the minimum expected holding cost rate

Z 5 min c9x

subject to 2ax9 2 xa9 1 ~I 2 P!9LX 1 X9L~I 2 P! 5 ~I 2 P9!L 1 L9~I 2 P!

a~#m!zm,l 1 O
i[# m

c

l ip~i , #m!zi ,m,l 5 O
i[#m

l i~1 2 p~i , #m!!zi ,m,l11, ; i , m, l ,

O
j[#m

x j
i 5 O

l50

C

lziml ; i , m,

O
j[#m

xj 5 O
l50

C

lzml ; m,

xj $ O
i[#m

r ix j
i, ; j , m,

zjl $ O
i[#m

r izijl , ; j , l , m,

zml # 1, ; m, l ,

x, X , z, Z $ 0.

For finiteC, the above linear program does not give a formal bound, because equilibrium
relations (23) do not necessarily hold with finiteC. However, if we do not include these
constraints and remove variablesxj from the formulation we do obtain a valid bound.

For C 5 `, the above linear program is not interesting as it would be very difficult to
solve. However, if we truncate the state space, by imposing the condition thatzi , j ,C11 5 0,
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we heuristically expect that the bound for finiteC would be close to the bound forC 5 `.
Moreover, as the number of variables of the linear program of Theorem 8 isO(NMC), the
problem is tractable. Its main advantage is that we can obtain heuristic policies from this
linear program as follows.

A heuristic policy.
(1) We solve the formulation of Theorem 8.
(2) When there is a service completion at stationm, the server is set to work on classi

with probability

P $Bi 5 1|L#m
5 l % 5

P $L#m
5 l |Bi 5 1%P $Bi 5 1%

P $L#m
5 l %

5
zimlr i

zml
.

The server selects to idle with probability

1 2 O
i[#m

zimlr i

zml
.

In general, the optimal policy would be to decide the probabilities that

P $Bi 5 1|L 5 l %,

whereL 5 (L 1, . . . , LN) and l 5 (l 1, . . . , l N). Under the proposed heuristic policy, the
server bases the decision of which customer to serve next, if any, on the total number of
customers in its station. The policy has the attractive feature of being decentralized once the
linear program is solved, as it only uses information that is local to the server.

A. Some basic results from the Palm calculus of point processes.In this appendix
we review for the reader’s reference some basic notions and results from the Palm calculus
of point processes that are used throughout the paper. For a thorough and rigorous treatment
of the subject we refer the reader to Baccelli and Bre´maud (1994).

Consider a discrete stochastic process {L(t)} t[R, with sample paths right-continuous with
left limits, representing the state evolution of a stochastic system, and letN 5 { Tn} n52`

` be
a point process of related epochs, with. . . , T21 , 0 # T0 , T1 , . . . . We may interpret
L(t) as the system state at timet, andTn as thenth event epoch. We assume that processes
{ L(t)} t[R andN 5 { Tn} n52`

` areadaptedto a commonhistory { ^ t} t[R, and that they are
stationary, which captures mathematically the intuitive notion that the system evolution and
the stream of epochs aretime-homogeneous.

For ease of notation we writeL 5 L(0), L2 5 L(02) andL1 5 L(01), whereL(02)
and L(01) denote the left and right limits ofL(t) at t 5 0, respectively. We denote
P { L 5 l } the equilibrium probability that the system state at anarbitrary time (such as
t 5 0) is l , and write the corresponding expectation asE[L]. We denotePN { L 5 l } the
equilibrium probabilitythat the system stateembeddedat anarbitrary epochis l , and write
the corresponding expectation asEN[L]. PN{ z } is the Palm probabilitywith respect to
stationary point processN, andEN[ z ] is the correspondingPalm expectation. By definition
of Palm probability,T0 5 0, i.e., timet 5 0 corresponds to an arbitrary epoch ofN.

Intensity and stochastic intensity. We denoteN[a, b) the number of points/event
epochs that lie on time interval [a, b), with a , b.
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DEFINITION 4 (INTENSITY). The expected number of points that lie in a unit length interval,

l 5 E@N~@0, 1!!#,

is called theintensityof N.
The intensity of a point process may be interpreted as aglobal measure of the rate of

points/epochs per unit time.
In some applications, such as queueing systems, the frequency at which events take place

may depend on the current state of the system. For example, in anM/M/ 2 queue, departures
happen at a higher rate when the two servers are busy than when only one is. This intuitive
notion of local density of points/frequency of epochs in a point process is captured by the
concept ofstochastic intensity.

Let { l(t)} t[R be a nonnegative process, adapted to the history {^ t} t[R.

DEFINITION 5 (STOCHASTIC INTENSITY). The process {l(t)} t[R is called an^ t-stochastic
intensityof N if

(i) it is locally integrable; that is,*B l(s) ds , ` for all bounded Borel setsB; and
(ii) For all a , b,

E@N~a, b#|^a# 5 EF E
a

b

l~s! ds|̂ aG .

The valuel(t) may be interpreted as the instantaneous rate at which points/epochs occur at
time t.

Superposition of point processes. Let N1, . . . , NK be stationary point processes,
defined in a common probability space. Letl 1, . . . , lK be their respective finite intensities.
Assume that point processN may be obtained through thesuperpositionof processes
N1, . . . , NK, i.e., processN has a point at timet if any of the processesN1, . . . , NK has a
point at that time. We shall write thenN 5 N1 1 . . . 1 NK. The intensity ofN can be shown
to be l 5 l 1 1 . . . 1 lK. The following theorem represents the Palm expectation with
respect to the composite processN in terms of the Palm probabilities with respect to the
elementary processesNk.

THEOREM 9 (SUPERPOSITION). The following relation holds:

PN$ z % 5 O
k51

K
lk

l
PNk$ z %.

Thinning of a point process and conditioning. Let ! be a measurable event, and
consider the point process obtained by counting only points from processN at which event
! happens. We refer to the resulting point processN! as athinnedprocess. The next result
relates the Palm probabilities with respect to the original processN and the thinned process
N!. Let l(N) andl(N!) denote the intensities of point processesN andN!, respectively.

THEOREM 10. The following relations hold:
(a)

PN!$ z % 5 PN$ z |!%.
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(b)

l~N!! 5 l~N!PN~!!.

Relating time and event expectations: Papangelou’s formula. Papangelou’s formula
is a fundamental and powerful result that provides the link between time-stationary
probability, Palm probability and stochastic intensity.

THEOREM 11 (PAPANGELOU 1972). If N admits a stochastic intensity{ l(t)} t[R, then

E@l~0!L~0!# 5 lEN@L 2#.

Several important results of queueing theory on the relation between the queueing state
distributions at an arbitrary time and at an arbitrary epoch follow directly from Papangelou’s
formula.

THEOREM 12 (PASTA: POISSONARRIVALS SEE TIME AVERAGES). If N is a Poisson process,
then

EN@L 2# 5 E@L#.

THEOREM 13 (CONDITIONAL PASTA). Assume that N admits a stochastic intensity
{ l(t)} t[R, with l(t) 5 mB(t), and where B(t) [ {0, 1} for all t [ R. Then,

EN@L 2# 5 E @L|B 5 1#.
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